Use actual template from Apertus
This commit is contained in:
48
app.py
48
app.py
@@ -1,24 +1,44 @@
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
import tokenizer
|
||||
from torchao.quantization import quantize_, int8_weight_only
|
||||
|
||||
model_name = "swiss-ai/Apertus-8B-Instruct-2509"
|
||||
model_name = "swiss-ai/Apertus-8B-2509"
|
||||
device = "cuda" # for GPU usage or "cpu" for CPU usage
|
||||
|
||||
# load the tokenizer and the model
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
model_name,
|
||||
).to(device)
|
||||
|
||||
quantize_(model, int8_weight_only())
|
||||
model.to("cuda")
|
||||
|
||||
print("Enter your prompt:")
|
||||
input_text = input()
|
||||
inputs = tokenizer.encode(input_text, return_tensors='pt').to("cuda")
|
||||
# prepare the model input
|
||||
print("Please enter the prompt you want to ask the cool AI")
|
||||
prompt = input()
|
||||
messages_think = [
|
||||
{"role": "user", "content": prompt}
|
||||
]
|
||||
|
||||
import time
|
||||
start_time = time.time()
|
||||
with torch.no_grad():
|
||||
outputs = model.generate(inputs, max_length=5000)
|
||||
example_template = """
|
||||
{% for message in messages %}
|
||||
<|start|>{{ message.role }}<|sep|>
|
||||
{{ message.content }}
|
||||
<|end|>
|
||||
{% endfor %}
|
||||
"""
|
||||
|
||||
end_time = time.time()
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages_think,
|
||||
chat_template=example_template,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True,
|
||||
)
|
||||
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
||||
|
||||
print(f"Quantized inference time: {end_time - start_time:.2f} seconds")
|
||||
print(f"Generated text: {tokenizer.decode(outputs[0], skip_special_tokens=True)}")
|
||||
# Generate the output
|
||||
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
|
||||
|
||||
# Get and decode the output
|
||||
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
|
||||
print(tokenizer.decode(output_ids, skip_special_tokens=True))
|
||||
|
||||
Reference in New Issue
Block a user