from transformers import AutoTokenizer, AutoModelForCausalLM import tokenizer from torchao.quantization import quantize_, int8_weight_only model_name = "swiss-ai/Apertus-8B-2509" device = "cuda" # for GPU usage or "cpu" for CPU usage # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, ).to(device) quantize_(model, int8_weight_only()) # prepare the model input print("Please enter the prompt you want to ask the cool AI") prompt = input() messages_think = [ {"role": "user", "content": prompt} ] example_template = """ {% for message in messages %} <|start|>{{ message.role }}<|sep|> {{ message.content }} <|end|> {% endfor %} """ text = tokenizer.apply_chat_template( messages_think, chat_template=example_template, tokenize=False, add_generation_prompt=True, ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # Generate the output generated_ids = model.generate(**model_inputs, max_new_tokens=32768) # Get and decode the output output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] print(tokenizer.decode(output_ids, skip_special_tokens=True))