Files
2025-09-24 11:43:06 +02:00

45 lines
1.2 KiB
Python

from transformers import AutoTokenizer, AutoModelForCausalLM
import tokenizer
from torchao.quantization import quantize_, int8_weight_only
model_name = "swiss-ai/Apertus-8B-2509"
device = "cuda" # for GPU usage or "cpu" for CPU usage
# load the tokenizer and the model
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
model_name,
).to(device)
quantize_(model, int8_weight_only())
# prepare the model input
print("Please enter the prompt you want to ask the cool AI")
prompt = input()
messages_think = [
{"role": "user", "content": prompt}
]
example_template = """
{% for message in messages %}
<|start|>{{ message.role }}<|sep|>
{{ message.content }}
<|end|>
{% endfor %}
"""
text = tokenizer.apply_chat_template(
messages_think,
chat_template=example_template,
tokenize=False,
add_generation_prompt=True,
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
# Generate the output
generated_ids = model.generate(**model_inputs, max_new_tokens=32768)
# Get and decode the output
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :]
print(tokenizer.decode(output_ids, skip_special_tokens=True))